
Contents
1 Introduction . ⁠1

1.1 Notation . ⁠1

2 Problem Definitions . ⁠2

2.1 Graph Problems . ⁠2

2.2 Set Problems . ⁠5

2.3 Optimization Problems . ⁠6

2.4 Satisfiability Problems . ⁠7

3 Reductions . ⁠9

3.1 Trivial Reductions . ⁠9

3.2 Non-Trivial Reductions . ⁠10

3.3 Unit Disk Mapping . ⁠12

4 Summary . ⁠14

Bibliography . ⁠14

Problem Reductions: Models and Transformations

Technical Documentation

github.com/CodingThrust/problem-reductions

Abstract. We present formal definitions for computational problems and polynomial-time reductions

implemented in the problemreductions library. For each reduction, we state theorems with constructive

proofs that preserve solution structure.

1 Introduction
A reduction from problem 𝐴 to problem 𝐵, denoted 𝐴 ⟶ 𝐵, is a polynomial-time transformation of 𝐴-instances

into 𝐵-instances such that: (1) the transformation runs in polynomial time, (2) solutions to 𝐵 can be efficiently

mapped back to solutions of 𝐴, and (3) optimal solutions are preserved. Figure 1 shows the 14 reductions

connecting 33 problem types.

1.1 Notation
We use the following notation throughout. An undirected graph 𝐺 = (𝑉 , 𝐸) consists of a vertex set 𝑉 and

edge set 𝐸 ⊆ (𝑉
2). For a set 𝑆, 𝑆 or 𝑉 \ 𝑆 denotes its complement. We write |𝑆| for cardinality. For Boolean

variables, 𝑥 denotes negation (¬𝑥). A literal is a variable 𝑥 or its negation 𝑥. A clause is a disjunction of literals.

A formula in conjunctive normal form (CNF) is a conjunction of clauses. We abbreviate Independent Set as IS,

Vertex Cover as VC, and use 𝑛 for problem size, 𝑚 for number of clauses, and 𝑘𝑗 = |𝐶𝑗| for clause size.

CircuitSATDominatingSet

Factoring

ILPIndependentSet

KColoring

KSatisfiability

Matching

MaxCut QUBO

Satisfiability

SetCoveringSetPacking

SpinGlassVertexCovering

Figure 1: Reduction graph. Colors: green (graph), red (set), yellow (optimization), blue (satisfiability), pink

(specialized).

2 Problem Definitions

2.1 Graph Problems
In all graph problems below, 𝐺 = (𝑉 , 𝐸) denotes an undirected graph with |𝑉 | = 𝑛 vertices and |𝐸| edges.

Definition 2.1 (Independent Set (IS)): Given 𝐺 = (𝑉 , 𝐸) with vertex weights 𝑤 : 𝑉 → ℝ, find 𝑆 ⊆ 𝑉

maximizing ∑𝑣∈𝑆 𝑤(𝑣) such that no two vertices in 𝑆 are adjacent: ∀𝑢, 𝑣 ∈ 𝑆 : (𝑢, 𝑣) ∉ 𝐸.

Reduces to: Set Packing (Definition 2.8).

Reduces from: Vertex Cover (Definition 2.2), SAT (Definition 2.13), Set Packing (Definition 2.8).

pub struct IndependentSet<W = i32> {

 graph: UnGraph<(), ()>, // The underlying graph

 weights: Vec<W>, // Weights for each vertex

}

impl<W: 'static> Problem for IndependentSet<W> {

 const NAME: &'static str = "IndependentSet";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", short_type_name::<W>())]

 }

 // ...

}

Definition 2.2 (Vertex Cover (VC)): Given 𝐺 = (𝑉 , 𝐸) with vertex weights 𝑤 : 𝑉 → ℝ, find 𝑆 ⊆ 𝑉

minimizing ∑𝑣∈𝑆 𝑤(𝑣) such that every edge has at least one endpoint in 𝑆: ∀(𝑢, 𝑣) ∈ 𝐸 : 𝑢 ∈ 𝑆 ∨ 𝑣 ∈ 𝑆.

Reduces to: Independent Set (Definition 2.1), Set Covering (Definition 2.9).

Reduces from: Independent Set (Definition 2.1).

pub struct VertexCovering<W = i32> {

 graph: UnGraph<(), ()>, // The underlying graph

 weights: Vec<W>, // Weights for each vertex

}

impl<W: 'static> Problem for VertexCovering<W> {

 const NAME: &'static str = "VertexCovering";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", short_type_name::<W>())]

 }

 // ...

}

Definition 2.3 (Max-Cut): Given 𝐺 = (𝑉 , 𝐸) with weights 𝑤 : 𝐸 → ℝ, find partition (𝑆, 𝑆) maximizing

∑(𝑢,𝑣)∈𝐸:𝑢∈𝑆,𝑣∈𝑆 𝑤(𝑢, 𝑣).

Reduces to: Spin Glass (Definition 2.10).

Reduces from: Spin Glass (Definition 2.10).

pub struct MaxCut<W = i32> {

 graph: UnGraph<(), W>, // Weighted graph (edge weights)

}

impl<W: 'static> Problem for MaxCut<W> {

 const NAME: &'static str = "MaxCut";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", short_type_name::<W>())]

 }

 // ...

}

Definition 2.4 (Graph Coloring): Given 𝐺 = (𝑉 , 𝐸) and 𝑘 colors, find 𝑐 : 𝑉 → {1, …, 𝑘} minimizing

|{(𝑢, 𝑣) ∈ 𝐸 : 𝑐(𝑢) = 𝑐(𝑣)}|.

Reduces to: ILP (Definition 2.12).

Reduces from: SAT (Definition 2.13).

pub struct Coloring {

 num_colors: usize, // Number of available colors (K)

 graph: UnGraph<(), ()>, // The underlying graph

}

impl Problem for Coloring {

 const NAME: &'static str = "Coloring";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", "Unweighted")]

 }

 // ...

}

Definition 2.5 (Dominating Set): Given 𝐺 = (𝑉 , 𝐸) with weights 𝑤 : 𝑉 → ℝ, find 𝑆 ⊆ 𝑉 minimizing

∑𝑣∈𝑆 𝑤(𝑣) s.t. ∀𝑣 ∈ 𝑉 : 𝑣 ∈ 𝑆 ∨ ∃𝑢 ∈ 𝑆 : (𝑢, 𝑣) ∈ 𝐸.

Reduces from: SAT (Definition 2.13).

pub struct DominatingSet<W = i32> {

 graph: UnGraph<(), ()>, // The underlying graph

 weights: Vec<W>, // Weights for each vertex

}

impl<W: 'static> Problem for DominatingSet<W> {

 const NAME: &'static str = "DominatingSet";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", short_type_name::<W>())]

 }

 // ...

}

Definition 2.6 (Matching): Given 𝐺 = (𝑉 , 𝐸) with weights 𝑤 : 𝐸 → ℝ, find 𝑀 ⊆ 𝐸 maximizing

∑𝑒∈𝑀 𝑤(𝑒) s.t. ∀𝑒1, 𝑒2 ∈ 𝑀 : 𝑒1 ∩ 𝑒2 = ∅.

Reduces to: Set Packing (Definition 2.8).

pub struct Matching<W = i32> {

 num_vertices: usize, // Number of vertices

 graph: UnGraph<(), W>, // Weighted graph

 edge_weights: Vec<W>, // Weights for each edge

}

impl<W: 'static> Problem for Matching<W> {

 const NAME: &'static str = "Matching";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", short_type_name::<W>())]

 }

 // ...

}

Definition 2.7 (Unit Disk Graph (Grid Graph)): A graph 𝐺 = (𝑉 , 𝐸) where vertices 𝑉 are points on a

2D lattice and (𝑢, 𝑣) ∈ 𝐸 iff the Euclidean distance 𝑑(𝑢, 𝑣) ≤ 𝑟 for some radius 𝑟. A King’s subgraph uses

the King’s graph lattice (8-connectivity square grid) with 𝑟 ≈ 1.5.

2.2 Set Problems

Definition 2.8 (Set Packing): Given universe 𝑈 , collection 𝒮︀ = {𝑆1, …, 𝑆𝑚} with 𝑆𝑖 ⊆ 𝑈 , weights 𝑤 :
𝒮︀ → ℝ, find 𝒫︀ ⊆ 𝒮︀ maximizing ∑𝑆∈𝒫︀ 𝑤(𝑆) s.t. ∀𝑆𝑖, 𝑆𝑗 ∈ 𝒫︀ : 𝑆𝑖 ∩ 𝑆𝑗 = ∅.

Reduces to: Independent Set (Definition 2.1).

Reduces from: Independent Set (Definition 2.1), Matching (Definition 2.6).

pub struct SetPacking<W = i32> {

 sets: Vec<Vec<usize>>, // Collection of sets

 weights: Vec<W>, // Weights for each set

}

impl<W: 'static> Problem for SetPacking<W> {

 const NAME: &'static str = "SetPacking";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", short_type_name::<W>())]

 }

 // ...

}

Definition 2.9 (Set Covering): Given universe 𝑈 , collection 𝒮︀ with weights 𝑤 : 𝒮︀ → ℝ, find 𝒞︀ ⊆ 𝒮︀

minimizing ∑𝑆∈𝒞︀ 𝑤(𝑆) s.t. ⋃𝑆∈𝒞︀ 𝑆 = 𝑈 .

Reduces from: Vertex Cover (Definition 2.2).

pub struct SetCovering<W = i32> {

 universe_size: usize, // Size of the universe

 sets: Vec<Vec<usize>>, // Collection of sets

 weights: Vec<W>, // Weights for each set

}

impl<W: 'static> Problem for SetCovering<W> {

 const NAME: &'static str = "SetCovering";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", short_type_name::<W>())]

 }

 // ...

}

2.3 Optimization Problems

Definition 2.10 (Spin Glass (Ising Model)): Given 𝑛 spin variables 𝑠𝑖 ∈ {−1, +1}, pairwise couplings

𝐽𝑖𝑗 ∈ ℝ, and external fields ℎ𝑖 ∈ ℝ, minimize the Hamiltonian (energy function): 𝐻(𝒔) = − ∑(𝑖,𝑗) 𝐽𝑖𝑗𝑠𝑖𝑠𝑗 −
∑𝑖 ℎ𝑖𝑠𝑖.

Reduces to: Max-Cut (Definition 2.3), QUBO (Definition 2.11).

Reduces from: Circuit-SAT (Definition 2.15), Max-Cut (Definition 2.3), QUBO (Definition 2.11).

pub struct SpinGlass<W = f64> {

 num_spins: usize, // Number of spins

 interactions: Vec<((usize, usize), W)>, // J_ij couplings

 fields: Vec<W>, // h_i on-site fields

}

impl<W: 'static> Problem for SpinGlass<W> {

 const NAME: &'static str = "SpinGlass";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", short_type_name::<W>())]

 }

 // ...

}

Definition 2.11 (QUBO): Given 𝑛 binary variables 𝑥𝑖 ∈ {0, 1}, matrix 𝑄 ∈ ℝ𝑛×𝑛, minimize 𝑓(𝒙) =
𝒙⊤𝑄𝒙.

Reduces to: Spin Glass (Definition 2.10).

Reduces from: Spin Glass (Definition 2.10).

pub struct QUBO<W = f64> {

 num_vars: usize, // Number of variables

 matrix: Vec<Vec<W>>, // Q matrix (upper triangular)

}

impl<W: 'static> Problem for QUBO<W> {

 const NAME: &'static str = "QUBO";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", short_type_name::<W>())]

 }

 // ...

}

Definition 2.12 (Integer Linear Programming (ILP)): Given 𝑛 integer variables 𝒙 ∈ ℤ𝑛, constraint

matrix 𝐴 ∈ ℝ𝑚×𝑛, bounds 𝒃 ∈ ℝ𝑚, and objective 𝒄 ∈ ℝ𝑛, find 𝒙 minimizing 𝒄⊤𝒙 subject to 𝐴𝒙 ≤ 𝒃 and

variable bounds.

Reduces from: Graph Coloring (Definition 2.4), Factoring (Definition 2.16).

pub struct ILP {

 num_vars: usize, // Number of variables

 bounds: Vec<VarBounds>, // Bounds per variable

 constraints: Vec<LinearConstraint>, // Linear constraints

 objective: Vec<(usize, f64)>, // Sparse objective

 sense: ObjectiveSense, // Maximize or Minimize

}

pub struct VarBounds { lower: Option<i64>, upper: Option<i64> }

pub struct LinearConstraint {

 terms: Vec<(usize, f64)>, // (var_index, coefficient)

 cmp: Comparison, // Le, Ge, or Eq

 rhs: f64,

}

impl Problem for ILP {

 const NAME: &'static str = "ILP";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", "f64")]

 }

 // ...

}

2.4 Satisfiability Problems

Definition 2.13 (SAT): Given a CNF formula 𝜑 = ⋀𝑚
𝑗=1

𝐶𝑗 with 𝑚 clauses over 𝑛 Boolean variables,

where each clause 𝐶𝑗 = ⋁
𝑖
ℓ𝑗𝑖 is a disjunction of literals, find an assignment 𝒙 ∈ {0, 1}𝑛 such that 𝜑(𝒙) =

1 (all clauses satisfied).

Reduces to: Independent Set (Definition 2.1), Graph Coloring (Definition 2.4), Dominating Set (Defin

ition 2.5), 𝑘-SAT (Definition 2.14).

Reduces from: 𝑘-SAT (Definition 2.14).

pub struct Satisfiability<W = i32> {

 num_vars: usize, // Number of variables

 clauses: Vec<CNFClause>, // Clauses in CNF

 weights: Vec<W>, // Weights per clause (MAX-SAT)

}

pub struct CNFClause {

 literals: Vec<i32>, // Signed: +i for x_i, -i for NOT x_i

}

impl<W: 'static> Problem for Satisfiability<W> {

 const NAME: &'static str = "Satisfiability";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", short_type_name::<W>())]

 }

 // ...

}

Definition 2.14 (𝑘-SAT): SAT with exactly 𝑘 literals per clause.

Reduces to: SAT (Definition 2.13).

Reduces from: SAT (Definition 2.13).

pub struct KSatisfiability<const K: usize, W = i32> {

 num_vars: usize, // Number of variables

 clauses: Vec<CNFClause>, // Each clause has exactly K literals

 weights: Vec<W>, // Weights per clause

}

impl<const K: usize, W: 'static> Problem for KSatisfiability<K, W> {

 const NAME: &'static str = "KSatisfiability";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", short_type_name::<W>())]

 }

 // ...

}

Definition 2.15 (Circuit-SAT): Given a Boolean circuit 𝐶 composed of logic gates (AND, OR, NOT,

XOR) with 𝑛 input variables, find an input assignment 𝒙 ∈ {0, 1}𝑛 such that 𝐶(𝒙) = 1.

Reduces to: Spin Glass (Definition 2.10).

Reduces from: Factoring (Definition 2.16).

pub struct CircuitSAT<W = i32> {

 circuit: Circuit, // The boolean circuit

 variables: Vec<String>, // Variable names in order

 weights: Vec<W>, // Weights per assignment

}

pub struct Circuit { assignments: Vec<Assignment> }

pub struct Assignment { outputs: Vec<String>, expr: BooleanExpr }

pub enum BooleanOp { Var(String), Const(bool), Not(..), And(..), Or(..), Xor(..) }

impl<W: 'static> Problem for CircuitSAT<W> {

 const NAME: &'static str = "CircuitSAT";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", short_type_name::<W>())]

 }

 // ...

}

Definition 2.16 (Factoring): Given a composite integer 𝑁 and bit sizes 𝑚, 𝑛, find integers 𝑝 ∈ [2, 2𝑚 −
1] and 𝑞 ∈ [2, 2𝑛 − 1] such that 𝑝 × 𝑞 = 𝑁 . Here 𝑝 has 𝑚 bits and 𝑞 has 𝑛 bits.

Reduces to: Circuit-SAT (Definition 2.15), ILP (Definition 2.12).

pub struct Factoring {

 m: usize, // Bits for first factor

 n: usize, // Bits for second factor

 target: u64, // The number to factor

}

impl Problem for Factoring {

 const NAME: &'static str = "Factoring";

 fn variant() -> Vec<(&'static str, &'static str)> {

 vec![("graph", "SimpleGraph"), ("weight", "i32")]

 }

 // ...

}

3 Reductions

3.1 Trivial Reductions
Theorem : (IS ↔︎ VC) 𝑆 ⊆ 𝑉 is independent iff 𝑉 \ 𝑆 is a vertex cover, with |IS| + |VC| = |𝑉 |. [Problems:

Definition 2.1, Definition 2.2.]

Proof : (⇒) If 𝑆 is independent, for any (𝑢, 𝑣) ∈ 𝐸, at most one endpoint lies in 𝑆, so 𝑉 \ 𝑆 covers all

edges. (⇐) If 𝐶 is a cover, for any 𝑢, 𝑣 ∈ 𝑉 \ 𝐶, (𝑢, 𝑣) ∉ 𝐸, so 𝑉 \ 𝐶 is independent. □

// Minimal example: IS -> VC -> extract solution

let is_problem = IndependentSet::<i32>::new(3, vec![(0, 1), (1, 2), (0, 2)]);

let result = ReduceTo::<VertexCovering<i32>>::reduce_to(&is_problem);

let vc_problem = result.target_problem();

let solver = BruteForce::new();

let vc_solutions = solver.find_best(vc_problem);

let is_solution = result.extract_solution(&vc_solutions[0]);

assert!(is_problem.solution_size(&is_solution).is_valid);

Theorem : (IS → Set Packing) Construct 𝑈 = 𝐸, 𝑆𝑣 = {𝑒 ∈ 𝐸 : 𝑣 ∈ 𝑒}, 𝑤(𝑆𝑣) = 𝑤(𝑣). Then 𝐼 is

independent iff {𝑆𝑣 : 𝑣 ∈ 𝐼} is a packing. [Problems: Definition 2.1, Definition 2.8.]

Proof : Independence implies disjoint incident edge sets; conversely, disjoint edge sets imply no shared

edges. □

// Minimal example: IS -> SetPacking -> extract solution

let is_problem = IndependentSet::<i32>::new(3, vec![(0, 1), (1, 2), (0, 2)]);

let result = ReduceTo::<SetPacking<i32>>::reduce_to(&is_problem);

let sp_problem = result.target_problem();

let solver = BruteForce::new();

let sp_solutions = solver.find_best(sp_problem);

let is_solution = result.extract_solution(&sp_solutions[0]);

assert!(is_problem.solution_size(&is_solution).is_valid);

Theorem : (VC → Set Covering) Construct 𝑈 = {0, …, |𝐸| − 1}, 𝑆𝑣 = {𝑖 : 𝑒𝑖 incident to 𝑣}, 𝑤(𝑆𝑣) =
𝑤(𝑣). Then 𝐶 is a cover iff {𝑆𝑣 : 𝑣 ∈ 𝐶} covers 𝑈 . [Problems: Definition 2.2, Definition 2.9.]

Theorem : (Matching → Set Packing) Construct 𝑈 = 𝑉 , 𝑆𝑒 = {𝑢, 𝑣} for 𝑒 = (𝑢, 𝑣), 𝑤(𝑆𝑒) = 𝑤(𝑒). Then

𝑀 is a matching iff {𝑆𝑒 : 𝑒 ∈ 𝑀} is a packing. [Problems: Definition 2.6, Definition 2.8.]

Theorem : (Spin Glass ↔︎ QUBO) The substitution 𝑠𝑖 = 2𝑥𝑖 − 1 yields 𝐻SG(𝒔) = 𝐻QUBO(𝒙) + const.
[Problems: Definition 2.10, Definition 2.11.]

Proof : Expanding − ∑𝑖,𝑗 𝐽𝑖𝑗(2𝑥𝑖 − 1)(2𝑥𝑗 − 1) − ∑𝑖 ℎ𝑖(2𝑥𝑖 − 1) gives 𝑄𝑖𝑗 = −4𝐽𝑖𝑗, 𝑄𝑖𝑖 = 2 ∑𝑗 𝐽𝑖𝑗 − 2ℎ𝑖.

□

// Minimal example: SpinGlass -> QUBO -> extract solution

let sg = SpinGlass::new(2, vec![((0, 1), -1.0)], vec![0.5, -0.5]);

let result = ReduceTo::<QUBO>::reduce_to(&sg);

let qubo = result.target_problem();

let solver = BruteForce::new();

let qubo_solutions = solver.find_best(qubo);

let sg_solution = result.extract_solution(&qubo_solutions[0]);

assert_eq!(sg_solution.len(), 2);

3.2 Non-Trivial Reductions
Theorem : (SAT → IS) [1] Given CNF 𝜑 with 𝑚 clauses, construct graph 𝐺 such that 𝜑 is satisfiable iff

𝐺 has an IS of size 𝑚. [Problems: Definition 2.13, Definition 2.1.]

Proof : Construction. For 𝜑 = ⋀𝑚
𝑗=1

𝐶𝑗 with 𝐶𝑗 = (ℓ𝑗,1 ∨ … ∨ ℓ𝑗,𝑘𝑗
):

Vertices: For each literal ℓ𝑗,𝑖 in clause 𝐶𝑗, create 𝑣𝑗,𝑖. Total: |𝑉 | = ∑𝑗 𝑘𝑗.

Edges: (1) Intra-clause cliques: 𝐸clause = {(𝑣𝑗,𝑖, 𝑣𝑗,𝑖′) : 𝑖 ≠ 𝑖′}. (2) Conflict edges: 𝐸conflict = {(𝑣𝑗,𝑖, 𝑣𝑗′,𝑖′) :
𝑗 ≠ 𝑗′, ℓ𝑗,𝑖 = ℓ𝑗′,𝑖′}.

Correctness. (⇒) A satisfying assignment selects one true literal per clause; these vertices form an IS of

size 𝑚 (no clause edges by selection, no conflict edges by consistency). (⇐) An IS of size 𝑚 must contain

exactly one vertex per clause (by clause cliques); the corresponding literals are consistent (by conflict

edges) and satisfy 𝜑.

Solution extraction. For 𝑣𝑗,𝑖 ∈ 𝑆 with literal 𝑥𝑘: set 𝑥𝑘 = 1; for 𝑥𝑘: set 𝑥𝑘 = 0. □

Theorem : (SAT → 3-Coloring) [2] Given CNF 𝜑, construct graph 𝐺 such that 𝜑 is satisfiable iff 𝐺 is

3-colorable. [Problems: Definition 2.13, Definition 2.4.]

Proof : Construction. (1) Base triangle: TRUE, FALSE, AUX vertices with all pairs connected. (2) Variable

gadget for 𝑥𝑖: vertices pos𝑖, neg𝑖 connected to each other and to AUX. (3) Clause gadget: for (ℓ1 ∨ … ∨
ℓ𝑘), apply OR-gadgets iteratively producing output 𝑜, then connect 𝑜 to FALSE and AUX.

OR-gadget(𝑎, 𝑏) ↦ 𝑜: Five vertices encoding 𝑜 = 𝑎 ∨ 𝑏: if both 𝑎, 𝑏 have FALSE color, 𝑜 cannot have

TRUE color.

Solution extraction. Set 𝑥𝑖 = 1 iff color(pos𝑖) = color(TRUE). □

Theorem : (SAT → Dominating Set) [2] Given CNF 𝜑 with 𝑛 variables and 𝑚 clauses, 𝜑 is satisfiable

iff the constructed graph has a dominating set of size 𝑛. [Problems: Definition 2.13, Definition 2.5.]

Proof : Construction. (1) Variable triangle for 𝑥𝑖: vertices pos𝑖 = 3𝑖, neg𝑖 = 3𝑖 + 1, dum𝑖 = 3𝑖 + 2 forming

a triangle. (2) Clause vertex 𝑐𝑗 = 3𝑛 + 𝑗 connected to pos𝑖 if 𝑥𝑖 ∈ 𝐶𝑗, to neg𝑖 if 𝑥𝑖 ∈ 𝐶𝑗.

Correctness. Each triangle requires at least one vertex in any dominating set. Size-𝑛 set must take exactly

one per triangle, which dominates clause vertices iff corresponding literals satisfy all clauses.

Solution extraction. Set 𝑥𝑖 = 1 if pos𝑖 selected; 𝑥𝑖 = 0 if neg𝑖 selected. □

Theorem : (SAT ↔︎ 𝑘-SAT) [2], [3] Any SAT formula converts to 𝑘-SAT (𝑘 ≥ 3) preserving satisfiability.

[Problems: Definition 2.13, Definition 2.14.]

Proof : Small clauses (|𝐶| < 𝑘): Pad (ℓ1 ∨ … ∨ ℓ𝑟) with auxiliary 𝑦: (ℓ1 ∨ … ∨ ℓ𝑟 ∨ 𝑦 ∨ 𝑦 ∨ …) to length 𝑘.

Large clauses (|𝐶| > 𝑘): Split (ℓ1 ∨ … ∨ ℓ𝑟) with auxiliaries 𝑦1, …, 𝑦𝑟−𝑘:

(ℓ1 ∨ … ∨ ℓ𝑘−1 ∨ 𝑦1) ∧ (𝑦1 ∨ ℓ𝑘 ∨ … ∨ 𝑦2) ∧ … ∧ (𝑦𝑟−𝑘 ∨ ℓ𝑟−𝑘+2 ∨ … ∨ ℓ𝑟)

Correctness. Original clause true ↔︎ auxiliary chain can propagate truth through new clauses. □

Theorem : (CircuitSAT → Spin Glass) [4], [5] Each gate maps to a gadget whose ground states encode

valid I/O. [Problems: Definition 2.15, Definition 2.10.]

Proof : Spin mapping: 𝜎 ∈ {0, 1} ↦ 𝑠 = 2𝜎 − 1 ∈ {−1, +1}.

Gate gadgets (inputs 0,1; output 2; auxiliary 3 for XOR) are shown in Table 1. Allocate spins per variable,

instantiate gadgets, sum Hamiltonians. Ground states correspond to satisfying assignments. □

Gate Couplings 𝐽 Fields ℎ

AND 𝐽01 = 1, 𝐽02 = 𝐽12 = −2 ℎ0 = ℎ1 = −1, ℎ2 = 2
OR 𝐽01 = 1, 𝐽02 = 𝐽12 = −2 ℎ0 = ℎ1 = 1, ℎ2 = −2
NOT 𝐽01 = 1 ℎ0 = ℎ1 = 0
XOR 𝐽01 = 1, 𝐽02 = 𝐽12 = −1, 𝐽03 = 𝐽13 = −2, 𝐽23 = 2 ℎ0 = ℎ1 = −1, ℎ2 = 1, ℎ3 = 2

Table 1: Ising gadgets for logic gates. Ground states match truth tables.

Theorem : (Factoring → Circuit-SAT) An array multiplier with output constrained to 𝑁 is satisfiable iff

𝑁 factors within bit bounds. (Folklore; no canonical reference.) [Problems: Definition 2.16, Definition 2.15.]

Proof : Construction. Build 𝑚 × 𝑛 array multiplier for 𝑝 × 𝑞:

Full adder (𝑖, 𝑗): 𝑠𝑖,𝑗 + 2𝑐𝑖,𝑗 = (𝑝𝑖 ∧ 𝑞𝑗) + 𝑠prev + 𝑐prev via:

𝑎 ≔ 𝑝𝑖 ∧ 𝑞𝑗, 𝑡1 ≔ 𝑎 ⊕ 𝑠prev, 𝑠𝑖,𝑗 ≔ 𝑡1 ⊕ 𝑐prev

𝑡2 ≔ 𝑡1 ∧ 𝑐prev, 𝑡3 ≔ 𝑎 ∧ 𝑠prev, 𝑐𝑖,𝑗 ≔ 𝑡2 ∨ 𝑡3

Output constraint: 𝑀𝑘 ≔ bit𝑘(𝑁) for 𝑘 = 1, …, 𝑚 + 𝑛.

Solution extraction. 𝑝 = ∑𝑖 𝑝𝑖2𝑖−1, 𝑞 = ∑𝑗 𝑞𝑗2𝑗−1. □

Theorem : (Spin Glass ↔︎ Max-Cut) [5], [6] Ground states of Ising models correspond to maximum

cuts. [Problems: Definition 2.10, Definition 2.3.]

Proof : MaxCut → SpinGlass: Set 𝐽𝑖𝑗 = 𝑤𝑖𝑗, ℎ𝑖 = 0. Maximizing cut equals minimizing − ∑ 𝐽𝑖𝑗𝑠𝑖𝑠𝑗 since

𝑠𝑖𝑠𝑗 = −1 when 𝑠𝑖 ≠ 𝑠𝑗.

SpinGlass → MaxCut: If ℎ𝑖 = 0: direct mapping 𝑤𝑖𝑗 = 𝐽𝑖𝑗. Otherwise, add ancilla 𝑎 with 𝑤𝑖,𝑎 = ℎ𝑖.

Solution extraction. Without ancilla: identity. With ancilla: if 𝜎𝑎 = 1, flip all spins before removing ancilla.

□

// Minimal example: SpinGlass -> MaxCut -> extract solution

let sg = SpinGlass::new(3, vec![((0, 1), 1), ((1, 2), 1), ((0, 2), 1)], vec![0, 0, 0]);

let result = ReduceTo::<MaxCut<i32>>::reduce_to(&sg);

let maxcut = result.target_problem();

let solver = BruteForce::new();

let maxcut_solutions = solver.find_best(maxcut);

let sg_solution = result.extract_solution(&maxcut_solutions[0]);

assert_eq!(sg_solution.len(), 3);

Theorem : (Coloring → ILP) The 𝑘-coloring problem reduces to binary ILP with |𝑉 | ⋅ 𝑘 variables and

|𝑉 | + |𝐸| ⋅ 𝑘 constraints. [Problems: Definition 2.4, Definition 2.12.]

Proof : Construction. For graph 𝐺 = (𝑉 , 𝐸) with 𝑘 colors:

Variables: Binary 𝑥𝑣,𝑐 ∈ {0, 1} for each vertex 𝑣 ∈ 𝑉 and color 𝑐 ∈ {1, …, 𝑘}. Interpretation: 𝑥𝑣,𝑐 = 1 iff

vertex 𝑣 has color 𝑐.

Constraints: (1) Each vertex has exactly one color: ∑𝑘
𝑐=1 𝑥𝑣,𝑐 = 1 for all 𝑣 ∈ 𝑉 . (2) Adjacent vertices have

different colors: 𝑥𝑢,𝑐 + 𝑥𝑣,𝑐 ≤ 1 for all (𝑢, 𝑣) ∈ 𝐸 and 𝑐 ∈ {1, …, 𝑘}.

Objective: Feasibility problem (minimize 0).

Correctness. (⇒) A valid 𝑘-coloring assigns exactly one color per vertex with different colors on adjacent

vertices; setting 𝑥𝑣,𝑐 = 1 for the assigned color satisfies all constraints. (⇐) Any feasible ILP solution has

exactly one 𝑥𝑣,𝑐 = 1 per vertex; this defines a coloring, and constraint (2) ensures adjacent vertices differ.

Solution extraction. For each vertex 𝑣, find 𝑐 with 𝑥𝑣,𝑐 = 1; assign color 𝑐 to 𝑣. □

Theorem : (Factoring → ILP) Integer factorization reduces to binary ILP using McCormick linearization

with 𝑂(𝑚𝑛) variables and constraints. [Problems: Definition 2.16, Definition 2.12.]

Proof : Construction. For target 𝑁 with 𝑚-bit factor 𝑝 and 𝑛-bit factor 𝑞:

Variables: Binary 𝑝𝑖, 𝑞𝑗 ∈ {0, 1} for factor bits; binary 𝑧𝑖𝑗 ∈ {0, 1} for products 𝑝𝑖 ⋅ 𝑞𝑗; integer 𝑐𝑘 ≥ 0 for

carries at each bit position.

Product linearization (McCormick): For each 𝑧𝑖𝑗 = 𝑝𝑖 ⋅ 𝑞𝑗:

𝑧𝑖𝑗 ≤ 𝑝𝑖, 𝑧𝑖𝑗 ≤ 𝑞𝑗, 𝑧𝑖𝑗 ≥ 𝑝𝑖 + 𝑞𝑗 − 1

Bit-position equations: For each bit position 𝑘:

∑
𝑖+𝑗=𝑘

𝑧𝑖𝑗 + 𝑐𝑘−1 = 𝑁𝑘 + 2𝑐𝑘

where 𝑁𝑘 is the 𝑘-th bit of 𝑁 and 𝑐−1 = 0.

No overflow: 𝑐𝑚+𝑛−1 = 0.

Correctness. The McCormick constraints enforce 𝑧𝑖𝑗 = 𝑝𝑖 ⋅ 𝑞𝑗 for binary variables. The bit equations encode

𝑝 × 𝑞 = 𝑁 via carry propagation, matching array multiplier semantics.

Solution extraction. Read 𝑝 = ∑𝑖 𝑝𝑖2𝑖 and 𝑞 = ∑𝑗 𝑞𝑗2𝑗 from the binary variables. □

Example: Factoring 15. The following Rust code demonstrates the closed-loop reduction (requires ilp feature:

cargo add problemreductions --features ilp):

use problemreductions::prelude::*;

// 1. Create factoring instance: find p (4-bit) × q (4-bit) = 15

let problem = Factoring::new(4, 4, 15);

// 2. Reduce to ILP

let reduction = ReduceTo::<ILP>::reduce_to(&problem);

let ilp = reduction.target_problem();

// 3. Solve ILP

let solver = ILPSolver::new();

let ilp_solution = solver.solve(ilp).unwrap();

// 4. Extract factoring solution

let extracted = reduction.extract_solution(&ilp_solution);

// 5. Verify: reads factors and confirms p × q = 15

let (p, q) = problem.read_factors(&extracted);

assert_eq!(p * q, 15); // e.g., (3, 5) or (5, 3)

3.3 Unit Disk Mapping
Theorem : (IS → GridGraph IS) [7] Any MIS problem on a general graph 𝐺 can be reduced to MIS on

a unit disk graph (King’s subgraph) with at most quadratic overhead in the number of vertices. [Problem:

Definition 2.1.]

Proof : Construction (Copy-Line Method). Given 𝐺 = (𝑉 , 𝐸) with 𝑛 = |𝑉 |:

1. Vertex ordering: Compute a path decomposition of 𝐺 to obtain vertex order (𝑣1, …, 𝑣𝑛). The pathwidth

determines the grid height.

2. Copy lines: For each vertex 𝑣𝑖, create an L-shaped “copy line” on the grid:

CopyLine(𝑣𝑖) = {(𝑟, 𝑐𝑖) : 𝑟 ∈ [𝑟start, 𝑟stop]} ∪ {(𝑟𝑖, 𝑐) : 𝑐 ∈ [𝑐𝑖, 𝑐stop]}

where positions are determined by the vertex order and edge structure.

3. Crossing gadgets: When two copy lines cross (corresponding to an edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸), insert a crossing

gadget that enforces: at most one of the two lines can be “active” (all vertices selected).

4. MIS correspondence: Each copy line has MIS contribution ≈ |line |
2 . The gadgets add overhead Δ

such that:

MIS(𝐺grid) = MIS(𝐺) + Δ

Solution extraction. For each copy line, check if the majority of its vertices are in the grid MIS. Map back:

𝑣𝑖 ∈ 𝑆 iff copy line 𝑖 is active.

Correctness. (⇒) An IS in 𝐺 maps to selecting all copy line vertices for included vertices; crossing gadgets

ensure no conflicts. (⇐) A grid MIS maps back to an IS by the copy line activity rule. □

Example: Petersen Graph.1 The Petersen graph (𝑛 = 10, MIS= 4) maps to a 30 × 42 King’s subgraph with

219 nodes and overhead Δ = 89. Solving MIS on the grid yields MIS(𝐺grid) = 4 + 89 = 93. The weighted and

unweighted KSG mappings share identical grid topology (same node positions and edges); only the vertex

weights differ. With triangular lattice encoding [7], the same graph maps to a 42 × 60 grid with 395 nodes and

overhead Δ = 375, giving MIS(𝐺tri) = 4 + 375 = 379.

(a) Petersen graph

(b) King’s subgraph (weighted)

(c) Triangular lattice (weighted)

Figure 2: Unit disk mappings of the Petersen graph. Blue: weight 1, red: weight 2, green: weight 3.

Weighted Extension. For MWIS, copy lines use weighted vertices (weights 1, 2, or 3). Source weights < 1

are added to designated “pin” vertices.

1Generated using cargo run --example export_petersen_mapping from the accompanying code repository.

QUBO Mapping. A QUBO problem min 𝒙⊤𝑄𝒙 maps to weighted MIS on a grid by:

1. Creating copy lines for each variable

2. Using XOR gadgets for couplings: 𝑥out = ¬(𝑥1 ⊕ 𝑥2)
3. Adding weights for linear and quadratic terms

4 Summary

Reduction Overhead Reference

IS ↔︎ VC 𝑂(|𝑉 |) —

IS → SetPacking 𝑂(|𝑉 | + |𝐸|) —

Matching → SetPacking 𝑂(|𝐸|) —

VC → SetCovering 𝑂(|𝑉 | + |𝐸|) —

QUBO ↔︎ SpinGlass 𝑂(𝑛2) —

SAT → IS 𝑂(∑𝑗|𝐶𝑗|2) [1]

SAT → 3-Coloring 𝑂(𝑛 + ∑𝑗|𝐶𝑗|) [2]

SAT → DominatingSet 𝑂(3𝑛 + 𝑚) [2]

SAT ↔︎ 𝑘-SAT 𝑂(∑𝑗|𝐶𝑗|) [2], [3]

CircuitSAT → SpinGlass 𝑂(|gates|) [4], [5]

Factoring → CircuitSAT 𝑂(𝑚𝑛) Folklore

SpinGlass ↔︎ MaxCut 𝑂(𝑛 + |𝐽|) [5], [6]

Coloring → ILP 𝑂(|𝑉 | ⋅ 𝑘 + |𝐸| ⋅ 𝑘) —

Factoring → ILP 𝑂(𝑚𝑛) —

IS → GridGraph IS 𝑂(𝑛2) [7]

Table 2: Summary of reductions. Gray rows indicate trivial reductions.

Bibliography
[1] R. M. Karp, “Reducibility among Combinatorial Problems,” in Complexity of Computer Computations,

Plenum Press, 1972, pp. 85–103.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness.

W. H. Freeman, 1979.

[3] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in Proceedings of the Third Annual ACM

Symposium on Theory of Computing, 1971, pp. 151–158.

[4] J. D. Whitfield, M. Faccin, and J. D. Biamonte, “Ground-state spin logic,” EPL (Europhysics Letters), vol.

99, no. 5, p. 57004, 2012.

[5] A. Lucas, “Ising formulations of many NP problems,” Frontiers in Physics, vol. 2, no. 5, 2014.

[6] F. Barahona, “On the computational complexity of Ising spin glass models,” Journal of Physics A: Mathe

matical and General, vol. 15, no. 10, pp. 3241–3253, 1982.

[7] M.-T. Nguyen, J.-G. Liu, J. Wurtz, M. D. Lukin, S.-T. Wang, and H. Pichler, “Quantum Optimization with

Arbitrary Connectivity Using Rydberg Atom Arrays,” PRX Quantum, vol. 4, p. 10316, 2023, doi: 10.1103/

PRXQuantum.4.010316.

https://doi.org/10.1103/PRXQuantum.4.010316
https://doi.org/10.1103/PRXQuantum.4.010316

	1 Introduction
	1.1 Notation

	2 Problem Definitions
	2.1 Graph Problems
	2.2 Set Problems
	2.3 Optimization Problems
	2.4 Satisfiability Problems

	3 Reductions
	3.1 Trivial Reductions
	3.2 Non-Trivial Reductions
	3.3 Unit Disk Mapping

	4 Summary
	Bibliography

