Contents

1T INbrOdUCTION ...ttt e e e e e e e 1
U0 A\ 711 (0 1
2 Problem Definitionst e e e e 2
2.1 Graph Problems e 2
2.2 Set Problemso 5
2.3 Optimization Problems e 6
2.4 Satisfiability PToblems e 7
3 REAUCHIONS ..\ ettt 9
3.1 Trivial ReduCtions .. .ot et e e e e e 9
3.2 Non-Trivial Reductionst e e e e e e 10
3.3 Unit Disk Mappingo e e e 12
A SUININATY oottt ettt et et et e e e e e e e e e 14
Bib oG ap iy . ..o 14

Problem Reductions: Models and Transformations

Technical Documentation

github.com/Coding Thrust/problem-reductions

Abstract. We present formal definitions for computational problems and polynomial-time reductions
implemented in the problemreductions library. For each reduction, we state theorems with constructive
proofs that preserve solution structure.

1 Introduction

A reduction from problem A to problem B, denoted A — B, is a polynomial-time transformation of A-instances
into B-instances such that: (1) the transformation runs in polynomial time, (2) solutions to B can be efficiently
mapped back to solutions of A, and (3) optimal solutions are preserved. Figure 1 shows the 14 reductions
connecting 33 problem types.

1.1 Notation

We use the following notation throughout. An wndirected graph G = (V, E) consists of a vertex set V and
edge set £ C (‘2/) For a set S, S or V'\ S denotes its complement. We write |S| for cardinality. For Boolean
variables, T denotes negation (—x). A literal is a variable z or its negation T. A clause is a disjunction of literals.
A formula in conjunctive normal form (CNF) is a conjunction of clauses. We abbreviate Independent Set as IS,
Vertex Cover as VC, and use n for problem size, m for number of clauses, and k; = |C’J\ for clause size.

Satisfiability

» KColoring

\4 A 4

[DominatingSet] [IndependentSet] CircuitSAT
A

KSatisfiability

Matching

VertexCovering SpinGlass

Figure 1: Reduction graph. Colors: green (graph), red (set), yellow (optimization), blue (satisfiability), pink
(specialized).

2 Problem Definitions

2.1 Graph Problems
In all graph problems below, G = (V, E) denotes an undirected graph with |V| = n vertices and |E| edges.

Definition 2.1 (Independent Set (IS)): Given G = (V, E) with vertex weights w:V — R, find SCV
maximizing . w(v) such that no two vertices in S are adjacent: Yu,v € S': (u,v) ¢ E.

Reduces to: Set Packing (Definition 2.8).
Reduces from: Vertex Cover (Definition 2.2), SAT (Definition 2.13), Set Packing (Definition 2.8).

pub struct IndependentSet<W = i32> {
graph: UnGraph<(), ()>, // The underlying graph
weights: Vec<W>, // Weights for each vertex

}

impl<W: 'static> Problem for IndependentSet<W> {
const NAME: &'static str = "IndependentSet";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", short type name::<W>())]
}
4 coc

Definition 2.2 (Vertex Cover (VC)): Given G = (V, E) with vertex weights w:V — R, find SCV
minimizing » _.w(v) such that every edge has at least one endpoint in S: V(u,v) € E:u € SVv € S.

Reduces to: Independent Set (Definition 2.1), Set Covering (Definition 2.9).
Reduces from: Independent Set (Definition 2.1).

pub struct VertexCovering<W = 132> {
graph: UnGraph<(), ()>, // The underlying graph
weights: Vec<W>, // Weights for each vertex

}

impl<W: 'static> Problem for VertexCovering<W> {
const NAME: &'static str = "VertexCovering";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", short type name::<W>())]
}
] coc

Definition 2.3 (Max-Cut): Given G = (V, E) with weights w: E — R, find partition (S,g) maximizing

Z(u,v)eE:ueS,ueg ’U)(U, ’U) :

Reduces to: Spin Glass (Definition 2.10).
Reduces from: Spin Glass (Definition 2.10).

pub struct MaxCut<W = i32> {
graph: UnGraph<(), W>, // Weighted graph (edge weights)
}

impl<W: 'static> Problem for MaxCut<W> {
const NAME: &'static str = "MaxCut";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", short type name::<W>())]
}
I coc

Definition 2.4 (Graph Coloring): Given G = (V,E) and k colors, find ¢:V — {1,...,k} minimizing
{(u,v) € E: c(u) = c(v)}.

Reduces to: ILP (Definition 2.12).

Reduces from: SAT (Definition 2.13).

pub struct Coloring {
num_colors: usize, // Number of available colors (K)
graph: UnGraph<(), ()>, // The underlying graph

}

impl Problem for Coloring {
const NAME: &'static str = "Coloring";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", "Unweighted")]
}
I ooc

Definition 2.5 (Dominating Set): Given G = (V, E) with weights w: V — R, find S C V minimizing
e W) st. VeV :veSVIUES: (u,v) €E.

Reduces from: SAT (Definition 2.13).

pub struct DominatingSet<W = 132> {
graph: UnGraph<(), ()>, // The underlying graph
weights: Vec<W>, // Weights for each vertex

}

impl<W: 'static> Problem for DominatingSet<W> {
const NAME: &'static str = "DominatingSet";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", short type name::<W>())]
}
I cac

Definition 2.6 (Matching): Given G = (V,E) with weights w: E —- R, find M C E maximizing
e Wie) st Ve, ep € MiegNey =0.

Reduces to: Set Packing (Definition 2.8).

pub struct Matching<W = i32> {

num_vertices: usize, // Number of vertices
graph: UnGraph<(), W>, // Weighted graph
edge weights: Vec<W>, // Weights for each edge

}

impl<W: ‘'static> Problem for Matching<W> {
const NAME: &'static str = "Matching";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", short type name::<W>())]
}
7 coc

Definition 2.7 (Unit Disk Graph (Grid Graph)): A graph G = (V, E) where vertices V are points on a
2D lattice and (u,v) € E iff the Euclidean distance d(u,v) < r for some radius r. A King’s subgraph uses
the King’s graph lattice (8-connectivity square grid) with r ~ 1.5.

2.2 Set Problems

Definition 2.8 (Set Packing): Given universe U, collection 8§ = {S,...,S,,} with S; C U, weights w :
8§ = R, find P C § maximizing }- _, w(S) s.t. VS;,8; € P: 5;NS; =0.

Reduces to: Independent Set (Definition 2.1).
Reduces from: Independent Set (Definition 2.1), Matching (Definition 2.6).

pub struct SetPacking<W = i32> {
sets: Vec<Vec<usize>>, // Collection of sets
weights: Vec<W>, // Weights for each set
}

impl<W: 'static> Problem for SetPacking<W> {
const NAME: &'static str = "SetPacking";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", short type name::<W>())]
}
// ...

Definition 2.9 (Set Covering): Given universe U, collection § with weights w:8 — R, find € C §
minimizing »°,_, w(S) s.t. Ug _, S =U.

Reduces from: Vertex Cover (Definition 2.2).

pub struct SetCovering<W = i32> {

universe size: usize, // Size of the universe
sets: Vec<Vec<usize>>, // Collection of sets
weights: Vec<W>, // Weights for each set

}

impl<W: 'static> Problem for SetCovering<W> {
const NAME: &'static str = "SetCovering";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", short type name::<W>())]
}
I ooc

2.3 Optimization Problems

Definition 2.10 (Spin Glass (Ising Model)): Given n spin variables s; € {—1,+1}, pairwise couplings
J;; € R, and external fields h; € R, minimize the Hamiltonian (energy function): H(s) = — Z(i i J;j8:85 —

> hisi
Reduces to: Max-Cut (Definition 2.3), QUBO (Definition 2.11).
Reduces from: Circuit-SAT (Definition 2.15), Max-Cut (Definition 2.3), QUBO (Definition 2.11).

pub struct SpinGlass<W = f64> {

num_spins: usize, // Number of spins
interactions: Vec<((usize, usize), W)>, // J ij couplings
fields: Vec<W>, // h_i on-site fields

}

impl<W: 'static> Problem for SpinGlass<W> {
const NAME: &'static str = "SpinGlass";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", short type name::<W>())]
}
// ...

Definition 2.11 (QUBO): Given n binary variables z; € {0,1}, matrix @ € R™ "™, minimize f(z)=
z' Q.

Reduces to: Spin Glass (Definition 2.10).
Reduces from: Spin Glass (Definition 2.10).

pub struct QUBO<W = f64> {
num vars: usize, // Number of variables
matrix: Vec<Vec<W>>, // Q matrix (upper triangular)

}

impl<W: 'static> Problem for QUBO<W> {
const NAME: &'static str = "QUBO";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", short type name::<W>())]
}
// ...

Definition 2.12 (Integer Linear Programming (ILP)): Given n integer variables @ € Z", constraint
matrix A € R™*" bounds b € R™, and objective ¢ € R", find minimizing ¢« subject to Az < b and
variable bounds.

Reduces from: Graph Coloring (Definition 2.4), Factoring (Definition 2.16).

pub struct ILP {

num vars: usize, // Number of variables
bounds: Vec<VarBounds>, // Bounds per variable
constraints: Vec<LinearConstraint>, // Linear constraints
objective: Vec<(usize, f64)>, // Sparse objective

sense: ObjectiveSense, // Maximize or Minimize

pub struct VarBounds { lower: Option<i64>, upper: Option<i64> }
pub struct LinearConstraint {

terms: Vec<(usize, f64)>, // (var index, coefficient)

cmp: Comparison, // Le, Ge, or Eq

rhs: f64,
}

impl Problem for ILP {
const NAME: &'static str = "ILP";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", "f64")]
}
Il ooc

2.4 Satisfiability Problems

Definition 2.13 (SAT): Given a CNF formula ¢ = /\;":1 C; with m clauses over n Boolean variables,
where each clause C; = \/i ¢;; is a disjunction of literals, find an assignment = € {0,1}" such that () =
1 (all clauses satisfied).

Reduces to: Independent Set (Definition 2.1), Graph Coloring (Definition 2.4), Dominating Set (Defin-
ition 2.5), k-SAT (Definition 2.14).

Reduces from: k-SAT (Definition 2.14).

pub struct Satisfiability<W = i32> {

num vars: usize, // Number of variables
clauses: Vec<CNFClause>, // Clauses in CNF
weights: Vec<W>, // Weights per clause (MAX-SAT)

}

pub struct CNFClause {
literals: Vec<i32>, // Signed: +i for x i, -i for NOT x i

}

impl<W: 'static> Problem for Satisfiability<W> {
const NAME: &'static str = "Satisfiability";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", short type name::<W>())]
}
I cac

Definition 2.14 (k-SAT): SAT with exactly k literals per clause.
Reduces to: SAT (Definition 2.13).
Reduces from: SAT (Definition 2.13).

pub struct KSatisfiability<const K: usize, W = 132> {

num vars: usize, // Number of variables
clauses: Vec<CNFClause>, // Each clause has exactly K literals
weights: Vec<W>, // Weights per clause

}

impl<const K: usize, W: 'static> Problem for KSatisfiability<K, W> {
const NAME: &'static str = "KSatisfiability";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", short type name::<W>())]
}
// ...

Definition 2.15 (Circuit-SAT): Given a Boolean circuit C' composed of logic gates (AND, OR, NOT,
XOR) with n input variables, find an input assignment @ € {0,1}"™ such that C(x) = 1.

Reduces to: Spin Glass (Definition 2.10).
Reduces from: Factoring (Definition 2.16).

pub struct CircuitSAT<W = i32> {

circuit: Circuit, // The boolean circuit
variables: Vec<String>, // Variable names in order
weights: Vec<W>, // Weights per assignment

}

pub struct Circuit { assignments: Vec<Assignment> }
pub struct Assignment { outputs: Vec<String>, expr: BooleanExpr }
pub enum BooleanOp { Var(String), Const(bool), Not(..), And(..), Or(..), Xor(..) }

impl<W: 'static> Problem for CircuitSAT<W> {
const NAME: &'static str = "CircuitSAT";
fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", short type name::<W>())]
}
I ooc

Definition 2.16 (Factoring): Given a composite integer N and bit sizes m,n, find integers p € [2,2™ —
1] and g € [2,2™ — 1] such that p x ¢ = N. Here p has m bits and ¢ has n bits.

Reduces to: Circuit-SAT (Definition 2.15), ILP (Definition 2.12).

pub struct Factoring {

}

m: usize, // Bits for first factor
n: usize, // Bits for second factor
target: u64, // The number to factor

impl Problem for Factoring {

const NAME: &'static str = "Factoring";

fn variant() -> Vec<(&'static str, &'static str)> {
vec![("graph", "SimpleGraph"), ("weight", "i32")]

}

JJ oo

3 Reductions

3.1 Trivial Reductions
Theorem: (IS «+» VC) S C V isindependent iff V'\ S is a vertex cover, with |IS| + [VC| = |V|. [Problems:
Definition 2.1, Definition 2.2.]

Proof: (=) If S is independent, for any (u,v) € E, at most one endpoint lies in S, so V '\ S covers all
edges. (<) If C is a cover, for any u,v € V\ C, (u,v) ¢ E, so V' \ C is independent. O

// Minimal example: IS -> VC -> extract solution

let
let
let

let
let
let

is problem = IndependentSet::<i32>::new(3, vec![(0, 1), (1, 2), (0, 2)1);
result = ReduceTo::<VertexCovering<i32>>::reduce to(&is problem);
vc_problem = result.target problem();

solver = BruteForce::new();
vc_solutions = solver.find best(vc_problem);
is solution = result.extract solution(&vc _solutions[0]);

assert!(is _problem.solution size(&is solution).is valid);

Theorem: (IS — Set Packing) Construct U=FE, S,={ec€ E:v€e}, w(S,) =w). Then I is
independent iff {S, : v € I'} is a packing. [Problems: Definition 2.1, Definition 2.8.]

Proof: Independence implies disjoint incident edge sets; conversely, disjoint edge sets imply no shared

edges. O

// Minimal example: IS -> SetPacking -> extract solution

let
let
let

let
let
let

is problem = IndependentSet::<i32>::new(3, vec![(0, 1), (1, 2), (0, 2)1);
result = ReduceTo: :<SetPacking<i32>>::reduce to(&is problem);
sp_problem = result.target problem();

solver = BruteForce::new();
sp_solutions = solver.find best(sp problem);
is solution = result.extract solution(&sp solutions[0]);

assert!(is problem.solution size(&is solution).is valid);

Theorem: (VC — Set Covering) Construct U = {0,...,|E| — 1}, S, = {i : e, incident to v}, w(S,) =
w(v). Then C is a cover iff {S, : v € C'} covers U. [Problems: Definition 2.2, Definition 2.9.]

Theorem: (Matching — Set Packing) Construct U =V, S, = {u, v} for e = (u,v), w(S,) = w(e). Then

M is a matching iff {S, : e € M} is a packing. [Problems: Definition 2.6, Definition 2.8.]

Theorem: (Spin Glass <> QUBO) The substitution s; =2z; —1 yields Hgg(s) = Hqupo(a) T cOnSst.
[Problems: Definition 2.10, Definition 2.11.]

Proof: Expanding — Zi,j Jij(2x; —1)(22; — 1) — 2o, hi(2z; — 1) gives @ = —4J;;, Q;; = 2 Zj Ji; — 2h;.
O

// Minimal example: SpinGlass -> QUBO -> extract solution

let sg = SpinGlass::new(2, vec![((0, 1), -1.0)], vec![0.5, -0.5]);
let result = ReduceTo::<QUBO>::reduce to(&sg);

let qubo = result.target problem();

let solver = BruteForce::new();

let qubo solutions = solver.find best(qubo);

let sg solution = result.extract solution(&qubo solutions[0]);
assert eq!(sg_solution.len(), 2);

3.2 Non-Trivial Reductions

Theorem: (SAT — IS) [1] Given CNF ¢ with m clauses, construct graph G such that ¢ is satisfiable iff
G has an IS of size m. [Problems: Definition 2.13, Definition 2.1.]

Proof: Construction. For ¢ = /\;":1 C; with C; = (Ej’l V..V Ej’kj):
Vertices: For each literal £; ; in clause C;, create v, ;. Total: [V| = Zj k;.

Edges: (1) Intra-clause cliques: E, . = {(v;,v;) 11 #i'}. (2) Conflict edges: E,opnie; = {(Uj,i7vj’,i’) :
j 7é j’,ﬁj’i = gj’,i/}'

Correctness. (=) A satisfying assignment selects one true literal per clause; these vertices form an IS of

size m (no clause edges by selection, no conflict edges by consistency). (<) An IS of size m must contain
exactly one vertex per clause (by clause cliques); the corresponding literals are consistent (by conflict
edges) and satisfy (.

Solution extraction. For v, ; € S with literal z: set x), = 1; for Ty set z;, = 0. O

Theorem: (SAT — 3-Coloring) [2] Given CNF ¢, construct graph G such that ¢ is satisfiable iff G is
3-colorable. [Problems: Definition 2.13, Definition 2.4.]

Proof: Construction. (1) Base triangle: TRUE, FALSE, AUX vertices with all pairs connected. (2) Variable
gadget for z;: vertices pos;, neg, connected to each other and to AUX. (3) Clause gadget: for (¢; V ...V
¢,.), apply OR-gadgets iteratively producing output o, then connect o to FALSE and AUX.

OR-gadget(a,b) o: Five vertices encoding o =a V b: if both a,b have FALSE color, o cannot have
TRUE color.

Solution extraction. Set x; = 1 iff color(pos;) = color(TRUE). O

Theorem: (SAT — Dominating Set) [2] Given CNF ¢ with n variables and m clauses, ¢ is satisfiable
iff the constructed graph has a dominating set of size n. [Problems: Definition 2.13, Definition 2.5.]

Proof: Construction. (1) Variable triangle for x,: vertices pos; = 3i, neg;, = 3i + 1, dum; = 3i + 2 forming
a triangle. (2) Clause vertex c; = 3n + j connected to pos; if z; € Cj, to neg, if 7; € C;.

Correctness. Each triangle requires at least one vertex in any dominating set. Size-n set must take exactly
one per triangle, which dominates clause vertices iff corresponding literals satisfy all clauses.

Solution extraction. Set x; = 1 if pos,; selected; z; = 0 if neg, selected. O

Theorem: (SAT < k-SAT) [2], [3] Any SAT formula converts to k-SAT (k > 3) preserving satisfiability.
[Problems: Definition 2.13, Definition 2.14.]

Proof: Small clauses (|C| < k): Pad (¢, V ... V £,) with auxiliary y: (¢, V...V £, Vy VgV ..) to length k.

Large clauses (|C| > k): Split (¢4 V ... V £,.) with auxiliaries yy, ..., Y,_j:

UV NVl VYD) ATV LV oV y) A e AT g Vil o Voo VL)

Correctness. Original clause true < auxiliary chain can propagate truth through new clauses. O

Theorem: (CircuitSAT — Spin Glass) [4], [5] Each gate maps to a gadget whose ground states encode
valid I/O. [Problems: Definition 2.15, Definition 2.10.]

Proof: Spin mapping: 0 € {0,1} » s =20 —1 € {-1,+1}.
Gate gadgets (inputs 0,1; output 2; auxiliary 3 for XOR) are shown in Table 1. Allocate spins per variable,

instantiate gadgets, sum Hamiltonians. Ground states correspond to satisfying assignments. O
Gate | Couplings J Fields h
AND | Jyy =1, Jpg = J1g = —2 hy=h; =—1,hyg =2
OR |Jy =1,y =Jjp =—2 hy=h; =1,hy =2
NOT | Jy; =1 hy=h; =0
XOR | Jp =1 Jpeo=Jig=—1,Jys=J13=—2,Jp3 =2|hy=h; =—1,hy =1,hy =2

Table 1: Ising gadgets for logic gates. Ground states match truth tables.

Theorem: (Factoring — Circuit-SAT) An array multiplier with output constrained to N is satisfiable iff
N factors within bit bounds. (Folklore; no canonical reference.) [Problems: Definition 2.16, Definition 2.15.]

Proof: Construction. Build m x n array multiplier for p x ¢:
Full adder (i, 4): s; ;+2¢; ; = (D AN 4j) + Sprov + Cproy Vias:

a = p; A qj’ tl =ad® Sprev’ Si,j = tl @ Cprev

by =11 A Cprevy B3 := QA Sppeys Ciji= ty Vg
Output constraint: My, := bity) for k=1, ...,m +n.
Solution extraction. p = Zipi?—l7 q= Ej qjgj—l_ 0

Theorem: (Spin Glass < Max-Cut) [5], [6] Ground states of Ising models correspond to maximum
cuts. [Problems: Definition 2.10, Definition 2.3.]

Proof: MazCut — SpinGlass: Set J;; = w

s;8; = —1 when s; # s,.

ij» hi = 0. Maximizing cut equals minimizing — 7 J;s;s; since

SpinGlass — MazCut: If h; = 0: direct mapping w;; = J;;. Otherwise, add ancilla a with w; , = h;.

Solution extraction. Without ancilla: identity. With ancilla: if o, = 1, flip all spins before removing ancilla.
O

// Minimal example: SpinGlass -> MaxCut -> extract solution

let sg = SpinGlass::new(3, vec![((0, 1), 1), ((1, 2), 1), ((®, 2), 1)1, vec![O, O, O]);

let result = ReduceTo::<MaxCut<i32>>::reduce to(&sg);
let maxcut = result.target problem();

let solver = BruteForce::new();

let maxcut solutions = solver.find best(maxcut);

let sg solution = result.extract solution(&maxcut solutions[0]);
assert eq!(sg_solution.len(), 3);

Theorem: (Coloring — ILP) The k-coloring problem reduces to binary ILP with |V| - k variables and
|[V| + |E| - k constraints. [Problems: Definition 2.4, Definition 2.12.]

Proof: Construction. For graph G = (V, E) with k colors:

Variables: Binary z,, . € {0,1} for each vertex v € V and color ¢ € {1,...,k}. Interpretation: z, . = 1 iff
vertex v has color c.

Constraints: (1) Each vertex has exactly one color: Zﬁ, L Tu,e = 1forallve V. (2) Adjacent vertices have

different colors: z,, .+ z, . < 1 for all (u,v) € E and ce {1,...,k}.
Objective: Feasibility problem (minimize 0).

Correctness. (=) A valid k-coloring assigns exactly one color per vertex with different colors on adjacent
vertices; setting x, . = 1 for the assigned color satisfies all constraints. (<) Any feasible ILP solution has
exactly one z, . = 1 per vertex; this defines a coloring, and constraint (2) ensures adjacent vertices differ.

Solution extraction. For each vertex v, find ¢ with z, . = 1; assign color ¢ to v. O

Theorem: (Factoring — ILP) Integer factorization reduces to binary ILP using McCormick linearization
with O(mn) variables and constraints. [Problems: Definition 2.16, Definition 2.12.]

Proof: Construction. For target N with m-bit factor p and n-bit factor ¢:

Variables: Binary p;,q; € {0,1} for factor bits; binary z;; € {0,1} for products p; - g;; integer ¢, > 0 for
carries at each bit position.

Product linearization (McCormick): For each z;; = p; - q;:
Zij Spi, 25 < 5, Zij zpi +q]' —1

Bit-position equations: For each bit position k:

Z Zij+ 1 = N+ 2¢;
i+j=k
where N, is the k-th bit of N and c_; =0.

No overflow: ¢, ,_1 = 0.

Correctness. The McCormick constraints enforce z;; = p; - g; for binary variables. The bit equations encode
p X ¢ = N via carry propagation, matching array multiplier semantics.

Solution extraction. Read p = ZZ p;2t and q = Ej qj2j from the binary variables. O

Ezample: Factoring 15. The following Rust code demonstrates the closed-loop reduction (requires ilp feature:
cargo add problemreductions --features ilp):

use problemreductions::prelude::*;

// 1. Create factoring instance: find p (4-bit) x q (4-bit) = 15
let problem = Factoring::new(4, 4, 15);

// 2. Reduce to ILP
let reduction = ReduceTo::<ILP>::reduce to(&problem);
let ilp = reduction.target problem();

// 3. Solve ILP
let solver = ILPSolver::new();
let ilp solution = solver.solve(ilp).unwrap();

// 4. Extract factoring solution
let extracted = reduction.extract solution(&ilp solution);

// 5. Verify: reads factors and confirms p x q = 15
let (p, q) = problem.read factors(&extracted);
assert _eq!(p * q, 15); // e.g., (3, 5) or (5, 3)

3.3 Unit Disk Mapping
Theorem: (IS — GridGraph IS) [7] Any MIS problem on a general graph G can be reduced to MIS on
a unit disk graph (King’s subgraph) with at most quadratic overhead in the number of vertices. [Problem:
Definition 2.1.]

Proof: Construction (Copy-Line Method). Given G = (V, E) with n = |V|:

1. Vertex ordering: Compute a path decomposition of G to obtain vertex order (vy, ..., v,,). The pathwidth
determines the grid height.

2. Copy lines: For each vertex v,, create an L-shaped “copy line” on the grid:
CopyLine(vi) = {(’I", ci) T e [rstart’ Tstop] } U {(riv C) 1cE [ci7 cstop]}
where positions are determined by the vertex order and edge structure.

3. Crossing gadgets: When two copy lines cross (corresponding to an edge (vi, Uj) € E), insert a crossing
gadget that enforces: at most one of the two lines can be “active” (all vertices selected).

4. MIS correspondence: Each copy line has MIS contribution = \line%. The gadgets add overhead A
such that:

MIS(Gyyq) = MIS(G) + A

Solution extraction. For each copy line, check if the majority of its vertices are in the grid MIS. Map back:
v; € S iff copy line ¢ is active.

Correctness. (=) An IS in G maps to selecting all copy line vertices for included vertices; crossing gadgets
ensure no conflicts. (<) A grid MIS maps back to an IS by the copy line activity rule. O

Example: Petersen Graph.' The Petersen graph (n = 10, MIS= 4) maps to a 30 x 42 King’s subgraph with

219 nodes and overhead A = 89. Solving MIS on the grid yields MIS(Ggrid) =44 89 = 93. The weighted and

unweighted KSG mappings share identical grid topology (same node positions and edges); only the vertex
weights differ. With triangular lattice encoding [7], the same graph maps to a 42 x 60 grid with 395 nodes and

overhead A = 375, giving MIS(G,,;) = 4 + 375 = 379.

v
.
. . . >« 0K 0B 0609 00000 » .
® o I ¥ Y { !
1 . 3 . 3 .
N2 ANV, N, N S
o o R N
L] L 4 L 4 . .
. . ©ceo000000000000000e " C
Vo A
(a) Petersen graph “ s

(¢) Triangular lattice (weighted)
Figure 2: Unit disk mappings of the Petersen graph. Blue: weight 1, red: weight 2, green: weight 3.

Weighted Extension. For MWIS, copy lines use weighted vertices (weights 1, 2, or 3). Source weights < 1

are added to designated “pin” vertices.

!Generated using cargo run --example export petersen mapping from the accompanying code repository.

QUBO Mapping. A QUBO problem min " Qx maps to weighted MIS on a grid by:
1. Creating copy lines for each variable
2. Using XOR gadgets for couplings: =, = —(z; & z,)

3. Adding weights for linear and quadratic terms

4 Summary

Reduction Overhead Reference
IS +» VC o(|V)) —

IS — SetPacking o(|V| + |E|) —
Matching — SetPacking | O(|E|) —

VC — SetCovering o(|V| + |E|) —
QUBO < SpinGlass O(n?) —

SAT — IS o(z C,?) 1]

SAT — 3-Coloring o(n +¥,C; |) 2]

SAT — DominatingSet | O(3n + m) 2]

SAT < k-SAT 0(2 c, |) 2], 3]
CircuitSAT — SpinGlass | O(|gates|) [4], [5]
Factoring — CircuitSAT | O(mn) Folklore
SpinGlass ¢+ MaxCut O(n+ |J|) (5], [6]
Coloring — ILP O(|V|-k+|E| - k) | —
Factoring — ILP O(mn) —

IS — GridGraph IS O(n?) (7]

Table 2: Summary of reductions. Gray rows indicate trivial reductions.

Bibliography
[1] R. M. Karp, “Reducibility among Combinatorial Problems,” in Complexity of Computer Computations,
Plenum Press, 1972, pp. 85-103.

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[3] S. A. Cook, “The Complexity of Theorem-Proving Procedures,” in Proceedings of the Third Annual ACM
Symposium on Theory of Computing, 1971, pp. 151-158.

[4] J. D. Whitfield, M. Faccin, and J. D. Biamonte, “Ground-state spin logic,” EPL (Europhysics Letters), vol.
99, no. 5, p. 57004, 2012.

[6] A. Lucas, “Ising formulations of many NP problems,” Frontiers in Physics, vol. 2, no. 5, 2014.

[6] F. Barahona, “On the computational complexity of Ising spin glass models,” Journal of Physics A: Mathe-
matical and General, vol. 15, no. 10, pp. 3241-3253, 1982.

[7] M.-T. Nguyen, J.-G. Liu, J. Wurtz, M. D. Lukin, S.-T. Wang, and H. Pichler, “Quantum Optimization with
Arbitrary Connectivity Using Rydberg Atom Arrays,” PRX Quantum, vol. 4, p. 10316, 2023, doi: 10.1103/
PRXQuantum.4.010316.

https://doi.org/10.1103/PRXQuantum.4.010316
https://doi.org/10.1103/PRXQuantum.4.010316

	1 Introduction
	1.1 Notation

	2 Problem Definitions
	2.1 Graph Problems
	2.2 Set Problems
	2.3 Optimization Problems
	2.4 Satisfiability Problems

	3 Reductions
	3.1 Trivial Reductions
	3.2 Non-Trivial Reductions
	3.3 Unit Disk Mapping

	4 Summary
	Bibliography

